A bioinformatic filter for improved base-call accuracy and polymorphism detection using the Affymetrix GeneChip® whole-genome resequencing platform
نویسندگان
چکیده
DNA resequencing arrays enable rapid acquisition of high-quality sequence data. This technology represents a promising platform for rapid high-resolution genotyping of microorganisms. Traditional array-based resequencing methods have relied on the use of specific PCR-amplified fragments from the query samples as hybridization targets. While this specificity in the target DNA population reduces the potential for artifacts caused by cross-hybridization, the subsampling of the query genome limits the sequence coverage that can be obtained and therefore reduces the technique's resolution as a genotyping method. We have developed and validated an Affymetrix Inc. GeneChip(R) array-based, whole-genome resequencing platform for Francisella tularensis, the causative agent of tularemia. A set of bioinformatic filters that targeted systematic base-calling errors caused by cross-hybridization between the whole-genome sample and the array probes and by deletions in the sample DNA relative to the chip reference sequence were developed. Our approach eliminated 91% of the false-positive single-nucleotide polymorphism calls identified in the SCHU S4 query sample, at the cost of 10.7% of the true positives, yielding a total base-calling accuracy of 99.992%.
منابع مشابه
Estimation of the rate of SNP genotyping errors from DNA extracted from different tissues.
High density single nucleotide polymorphism (SNP) genotyping panels provide an alternative to microsatellite markers for genome scans. However, genotype errors have a major impact on power to detect linkage or association and are difficult to detect for SNPs. We estimated error rates with the Affymetrix GeneChip SNP platform in samples from a family with a mixed set of monozygotic (MZ) and dizy...
متن کاملGenetic aberrations in childhood acute lymphoblastic leukaemia: application of high-density single nucleotide polymorphism array.
Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single ...
متن کاملApplication Note, Microarrays in Cancer Research
An important goal in cancer research is to identify significant genomic alterations responsible for the emergence and progression of disease. It is now possible, with Affymetrix brand products, to perform extensive analysis of tumor genomes, including wholegenome chromosomal copy number analysis, systematic gene resequencing, and RNA expression analysis. This application note is to review recen...
متن کاملDevelopment of a High-Throughput Resequencing Array for the Detection of Pathogenic Mutations in Osteogenesis Imperfecta
OBJECTIVE Osteogenesis imperfecta (OI) is a rare inherited skeletal disease, characterized by bone fragility and low bone density. The mutations in this disorder have been widely reported to be on various exonal hotspots of the candidate genes, including COL1A1, COL1A2, CRTAP, LEPRE1, and FKBP10, thus creating a great demand for precise genetic tests. However, large genome sizes make the proces...
متن کاملForensic application of the Affymetrix human mitochondrial resequencing array.
In the field of forensic DNA testing, sequencing regions of the mitochondrial genome is performed when insufficient genomic DNA is present for traditional autosomal short tandem repeat (STR) testing. Sequencing coding region polymorphisms in the mitochondrial genome can be useful for resolving individuals who have the identical HV1 and HV2 control region sequence. Various methods and strategies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007